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Abstract

The high-precision astrometric mission GAIA recently reported the remarkable discovery of
a Sun-like star closely orbiting a dark object, with a semi-major axis and period of 1.4AU and
187.8 days respectively. While the plausible expectation for the central dark object is a black
hole, the evolutionary mechanism leading to the formation of such a two-body system is highly
challenging. Here, we challenge the scenario of a central black hole and show that the observed
orbital dynamics can be explained under fairly general assumptions if the central dark object is a
stable clump of bosonic particles of spin-0, or spin-1, known as a boson star. We further explain
how future astrometric measurements of similar systems will provide an exciting opportunity to
probe the fundamental nature of compact objects and test compact alternatives to black holes.

1 Introduction
The high-precision astrometric mission GAIA [VBP22,ABB+22b] recently released the observation of
a Sun-like star in an orbit around a dark central object, reporting a measurement of the system’s or-
bital parameters down to the ∼ 10−2 % level. The total mass of the system is at 11.7M�, the distance
between the two objects is 1.4 AU, while the orbital period is amongst the highest ever observed for
such a system, at about 187.8 days [EBRQ+22]. This benchmark observation is only the beginning,
as GAIA promises to observe a large number of similar binary systems in the future towards a deeper
understanding of their evolutionary dynamics.

The luminous star orbiting the dark object is compatible with a typical G-dwarf star of a mass
0.93M� at solar metallicity. The nature of the central black object, however, appears rather challeng-
ing to explain1. If the central object were a system of non-luminous baryonic compact objects such
as neutron stars, it would probably be unstable. On the other hand, the scenario of a central black
hole requires unreasonable amount of fine-tuning within the usual evolutionary channels. In particu-
lar, if the system is expected to have formed as a binary in isolation, a common envelope formation
scenario is rather unlikely, given the system’s arrangement. This requires an extreme, and possibly
unphysical, tuning of the relevant parameters of the evolutionary channel under consideration. More-
over, formation within a globular cluster is also improbable given the geometrical characteristics of
the observed orbit. Other evolutionary channels such as formation without a common envelope or via
a hierarchical triple also seem unlikely for similar reasons. For a detailed discussion of these issues we
refer to [EBRQ+22].

In this work we will attempt to explain GAIAs’s observation assuming the central object to be a
compact, self-gravitating configuration of bosonic particles, known as a boson star. Our motivation
is twofold: i) Precision astrometric observations of binary systems allow dynamical tests of gravity
at astrophysical scales, and in particular, tests of black holes, as well as of horizon-less alternatives
such as boson stars. Boson stars arise in theories where the role of dark matter is played by some
massive field of bosonic nature. ii) In addition, future high-precision observations can yield data that
can help to distinguish between black holes from exotic alternatives in binary systems. It is, therefore,
tantamount to test the geometrical differences of orbiting stars around possible dark objects so that

1We note that there have not been any X-ray or radio-wave observations associated to the central object that could
help to identify it with a black hole.
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one can gain insights not only on the evolutionary dynamics of binaries, but also on the properties of
fundamental exotic particles which may constitute the elusive dark matter.

A boson star consists of a self-gravitating object made out of (exotic) boson particles in the form
of a Bose-Einstein condensate. These may be described as everywhere regular lumps, i.e. self-
gravitating solitons, of some yet undetected bosonic field [Kau68, RB69, BCHR16, CSW86, Lyn89,
SM98,YE97,AR03,SM03,LP17,GSG14,HPR17,ABB+22a,HPRS19,GMP19,DHR20,Min18,HKP+21,
HR20,HR+23]. Boson stars are expected to form at astrophysical scales via collapse under their own
gravity while dispersing energy through gravitational cooling [SS94,GUL06], leading to a non-luminous
lump of bosonic matter. A key difference with black holes is the lack of an event horizon.

While boson stars with a generic bosonic field seem to be possible, only two fundamental fields
have been studied in the literature: A bosonic matter of spin-0 (s = 0, scalar particles), and a spin-1
matter (s = 1, vector particles). For both cases, we will assume that the bosonic matter is coupled
minimally to the spacetime curvature, however, we will allow for self-interactions of the bosonic fields.
The values of the interaction couplings , including the mass of the boson, determine the effective mass
and radius of the boson star. As we will show, for a large part of the parameter space of the bosonic
interactions, we can construct boson star configurations which explain the orbital characteristics as
measured by GAIA without the need of a central black hole. At the same time, we discuss how the
future measurement of orbital precession of similar binary systems would allow to distinguish the na-
ture of the central dark object.

The paper is structured as follows: In Section 2, we explain the main equations and numerical
solutions for the construction of the boson stars which will play the role of the central dark object.
In Section 3 we compute and discuss the orbital trajectories of the star around the boson star under
different assumptions. Our results for the orbital dynamics of the two-body system are presented in
Sections 4 and 5. We summarise in Section 6. An overview of our results can be found in Figures 1, 3
and 4.

Unless otherwise stated, throughout the text we define the physical units as: c = 63241 AU · yr−1,
G ' 39.748 AU3 ·M−1� · yr−2, MP ' 1.094 · 10−38 M�. For the numerical construction of the boson
stars, we use geometrised units where G = 1 = c = ~. We are solely interested in spherical symmetry
and the metric matter functions are only radially dependent. For notation simplicity, after being first
introduced, the functions’ radial dependence is omitted, e.g. X(r) ≡ X, and X ′ ≡ dX/dr.

2 Modelling the dark object

2.1 Field equations for boson stars
The action that describes a self-gravitating bosonic field Ψ, minimally coupled to gravity reads

S =

∫
d4x
√
−g
[

R

16πG
+ Ls(Ψ)

]
, (1)

where R ≡ R (gµν) is the Ricci scalar of the spacetime described by the metric gµν , g is the metric’s
determinant, and G stands for the bare Newton’s constant. Let us consider a complex spin-0 (rep-
resented by a scalar, Φ(r)), and a complex spin-1 (represented by a vector, Aα(r)). The respective
lagrangian Ls reads as

L0 = −1

2
gαβ
(
∂αΦ̄∂βΦ + ∂βΦ̄∂αΦ

)
+ Ui(|Φ|2) , L1 = −1

4
FαβF̄

αβ − V (A2) , (2)

with A2 ≡ AαĀα and an overbar denoting complex conjugation. For both types of fields we consider a
kinetic term and an interaction potential. The fields enjoy a U(1) symmetry associated to a conserved
Noether charge, which energetically stabilizes the solution. Variation of the action with respect to the
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metric and matter fields leads to the following sets of field equations2

Gαβ = 4π
[
∂αΦ̄∂βΦ + ∂βΦ̄∂αΦ− gαβL0

]
, �Φ = Ûi · Φ , (3)

Gαβ = 4π

[
1

2

(
FαδF̄βγ + F̄αδFβγ

)
gδγ +

(
AαĀβ + ĀαAβ − gαβL1

)
V̂

]
,

1

2
∇αFαβ = V̂ ·Aβ , (4)

where Gαβ is the Einstein’s tensor, � (∇) the covariant d’Alembertian (derivative) operator, Ûi ≡
dUi/d|Φ|2 and V̂ ≡ dV/dA2. For the metric ansatz, let us consider a widely used choice compatible
with spherically symmetric configurations

k ds2 = −σ(r)2N(r) c2dt2 +
dr2

N(r)
+ r2

(
dθ2 + sin2 θdϕ2

)
, N(r) = 1− 2m(r)G

rc2
, (5)

withm(r) the Misner-Sharp mass function [MS64] and σ(r) a free metric function. We use k = 1 = c =
G unless otherwise stated. We are interested in asymptotically flat, stationary and fundamental state
solutions for the self-gravitating matter fields. For this purpose, we seek solutions under a harmonic
ansatz as

Φ(r, t) = φ(r) e−iωt , Aµ =
[
f(r) dt+ ig(r) dr

]
e−iωt , (6)

where φ(r) is the scalar field’s amplitude, and f(r) and g(r) are two real potentials that define the
Proca (vector) field’s ansatz. In both cases, ω is the field’s frequency and is strictly real for stationary
solutions. In the vector case, the field equation implies the Lorenz condition ∇α(V̂ Aα) = 0, which is
a dynamical condition, rather than a gauge choice. For the interaction potential, let us consider two
well-motivated cases for the scalar field (Ui), and one for the vector field (V ).

Vector-field potential (V ): For the vector model, we will focus on the simple case of a massive
vector [BCHR16,HPR17]

V =
µ2
P

2
A2 , (7)

with µP the vector’s mass. Stars built out of vector bosons with a quartic self-interaction, i.e. an
interaction of the form ∼ λA4, are also possible and were studied in [Min18,HR20,HPR+21]. However,
the work of [HPR+21] showed that the allowed values of the vector’s self-interaction have a negligible
impact, while recent works have shown that self-interacting vector fields are prone to ghost instabilities
[CHWB22a,CHWB22b]. For the potential (7) the equations boil down to a set of four, first-order field
equations, two for the metric and two for the matter field respectively,

m′ = 4πr2
[

(f ′ − ωg)2

2σ2
+ µ2

P

( f2

2Nσ2
+N

)]
, σ′ = 8πrσµ2

P

[
g2 +

f2

N2σ2

]
,

f ′ = ωg − 2
gσ2N

ω
µ2
P ,

[
r2
(
ωg − f ′

)
σ

]′
+

2r2f

Nσ
µ2
P = 0 . (8)

Scalar-field potential (Ui): Many boson star models based on scalar fields have been considered
over the years. We refer to e.g. [SM03] for a review. Here, we shall divide our analysis into two
distinct cases. i) The first case is a potential up to a quartic self-interaction which corresponds to a
renormalisable potential with even powers of the scalar field [CSW86], and ii) an axion-like potential
motivated by models of the QCD axion [GMP19,DHR20]. They read as

Uself =
µ2
S

2
φ2 + λφ4 , Uaxion =

2µ2
S f

2
α

~B

[
1−

√
1− 4B sin2

(φ√~
2 fα

)]
. (9)

Where µS is the scalar field’s mass, while λ and fα are the corresponding coupling strengths, and
B = z

1+z2 ≈ 0.22 with z = mu

md
≈ 0.48 the mass ratio of the up/down quark. The second term in the

potential is the standard QCD axion potential which ensures Uaxion(0) = 0, and hence, asymptotic
flatness. To gather intuition about the axionic potential, we expand it around its minimum at φ = 0,

Uaxion ≈ µ2
S · φ2 −

[(
3B − 1

12

)
~µ2

S

f2α

]
· φ4 +O(φ6) . (10)

2We remind that in this section we set G = 1.
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A decrease in the coupling strength fα implies a decrease in the width of the potential, which is
equivalent to an increase in the self-interaction, fα ∝ 1/

√
λ. Notice that for the axionic potential, the

massive, non-self-interacting configuration is recovered as fα → +∞ [Kau68,RB69].
The gravity-matter field equations for this case reduce to

m′ = 4πr2
[
Nφ′2 +

ω2φ2

Nσ2
+ Ui

]
, σ′ = 8πσr

[
φ′2 +

ω2φ2

N2σ2

]
,

φ′′ = −2φ′

r
− N ′φ′

N
− σ′φ′

σ
− ω2φ

N2σ2
+
Ûi
N
φ , (11)

reminding that Ûi ≡ dUi/d|Φ|2.

2.2 Numerical strategy and boson star solutions
In order to integrate the set of field equations (8) and (11) one has to implement suitable boundary
conditions at both spatial origin and asymptotic infinity. At the origin, we require that m(0) =
0, σ(0) = σ0, φ(0) = φ0, f(0) = f0 and g(0) = 0. In addition, to ensure regularity at the centre, the
free functions in the metric and interaction potentials can be expanded around r = 0 as

s = 0 : m ≈ 4π

3

Uiσ
2
0 + ω2 φ20
σ0

r3, σ ≈ σ0 + 4π
ω2 φ20
σ0

r2, φ ≈ φ0 +
φ0
6

(
Ûi −

ω2

σ2
0

)
r2 , (12)

s = 1 : m ≈ 4π

6

f20 µ
2
P

σ2
0

r3 , σ ≈ σ0 + 2π
f20 µ

2
P

σ0
r2 , g ≈ −f0 ω

3σ2
0

r , f ≈ f0 + f0
µ2
P σ

2
0 − ω2

6σ2
0

r2 .

(13)

At infinity, we impose asymptotic flatness and a finite ADM mass. This translates to the condi-
tions m(∞) = M, σ(∞) = 1, and φ(∞) = 0 = f(∞) = g(∞). The values of σ0 and M are
fixed by the numerics, while σ(∞) fixes the following scaling symmetry of the system of equa-
tions: {σ, ω, f0} → ζ{σ, ω, f0}, with ζ > 0. An additional rescaling invariance holds as {r,m} =
ζ{r̄, m̄}, {ω, µ} = 1

ζ {ω̄, µ̄}, σ = σ̄ and {f, g} = {f̄ , ḡ}, which imposes invariance of the product m(r)µ

and ω/µ. Therefore, we can work in units set by the field’s mass, i.e. ζ = µ−1, and set for the scalar
and vector mass µ2

P = µ2
S = 1.

For each value of ω/σ0, the set of coupled ODEs are numerically integrated by means of a Runge-
Kutta method with a local error of 10−15. The boundary conditions are enforced through a shooting
strategy on φ0 (scalar) and f0 (vector) respectively, with a tolerance of 10−9 set at spatial asymptotic
infinity for the scalar/vector decay value, while m(∞) → M and σ(∞) → 1. To test the numerical
solutions we have considered two accuracy tests: the so-called virial identities [HOPR21, HOPR22,
OP22]3, as well as the difference between the ADM mass (computed as a volume integral of the density
[Kom63]) and the one obtained from the mass function at infinity. Both tests yield a relative error of
< 10−5. For a more in-depth computation of both expressions, we refer to [HPR+21,HPR17,HR20].

Iterating our numerical procedure for a sufficiently large set of ω/σ0 points, we can reconstruct
what is known as the domain of existence for our set of models. The result is shown in Figure 1. The
figure shows the resulting mass of the boson star against the frequency ω appearing in the stationary
ansatz of equations (5)-(6). The figure considers the following cases: a non-self-interacting vector
star; a scalar boson star with a quartic self-interaction of µ = 1, λ = 100; a scalar boson star with
µ = 1, λ = 0, and a scalar boson star with an axion-like potential with fα = 0.02. The domain of
existence in all models corresponds to a spiral in the M vs. ω diagram starting from M = 0 for ω = µ,
in which limit the fields become very diluted and the solution trivializes. As one goes inside the spiral,
there is an increase of the mass while ω decreases until the mass attains a maximum MMax for ωcrit..
The frequency proceeds to decrease until it reaches a minimum and backbends into a second branch.
Further backbendings and branches follow. At the centre of the spiral, the solutions likely tend to a
singular solution, however, without ever having a horizon. The first branch up to MMax corresponds
to the perturbatively stable boson star solutions, which is a common feature for both scalar and vector

3A set of identities obtained from a Derrick-type scaling argument [Der64], which are independent of the equations
of motion.
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stars [GW89,Gle88,LP89]. In the case of the axionic model, an additional stable branch between the
first local minimum of the mass and the second local maximum mass exists4.

Uaxion (see (9))

Uself =
µ2
S

2 φ
2

Uself =
µ2
S

2 φ
2 + λφ4

V =
µ2
P

2 A2

Figure 1: Domain of existence for all our boson star configurations in geometrised units and µ = 1.0.
Mµ is the total mass of the star in units of µ, while ω/µ is a measure of the fundamental energy
state of the boson field (see also Section 2). The dotted/blue curve corresponds to a star made out
of a vector field; the solid/black to a scalar boson star without a self-interaction; the green/dashed
to a scalar star with a quartic self-interaction λ = 100; the red/dot-dashed to a scalar star with an
axion-like potential with fα = 0.02 (see equations (9) and (10)). At ω/µ = 1 and Mµ = 0, stars tend
to have zero density. The mass M (ω) increases (decreases) until it reaches a maximum mass (MMax)
at ωcrit., accompanied with an increase in the star’s density. Then the mass decreases until a minimum
frequency completing the first branch. Further backbendings and respective branches follow. The first
branch up to MMax corresponds to the perturbatively stable boson star solutions.

3 Orbital dynamics of the two-body system
We want to describe the orbit of a luminous star around a dark object as observed by GAIA [EBRQ+22].
The observed total mass (MT ), eccentricity (e), period (T ) and semi-major axis (a) respectively read
as

{MT , e, T, a} = {11.71M�, 0.45, 187.77 days, 1.41 AU}. (14)

The system’s total mass consists of a central dark object with mass MDO = 9.62 M� and an orbiting
luminous star of massM∗ = 0.93 M�. At this stage, it is useful to restore units to facilitate comparison
with observations. The metric ansatz (5) can be cast in physical units such that c = 63241 AU · yr−1,
G = 39.748 AU3 ·M� · yr−2 and MPl = 1.094 × 10−38 M� . Concerning the orbital dynamics of the
luminous star, to simplify the computation we consider the origin of the coordinate systems at the
central object. The system’s spherical symmetry allows us to restrict the orbit of the luminous star
on the equatorial plane around the dark object, i.e. θ = π/2. There are two conserved quantities
associated with the integrals of motion of the orbiting star, namely, the energy E , and the angular
momentum L as

ṫ = − E
Nσ2 c2

, ϕ̇ =
L

r2
. (15)

The motion of the luminous star in the spacetime background of the central dark object is described
by the timelike geodesic equation

ẍρ + Γραβ ẋ
αẋβ = 0 , (16)

4While all the solutions in the first stable branch are energetically stable Qµ < M , only some of the solutions in the
second branch are energetically stable (see [HPR+21]).
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with a dot denoting derivative with respect to the affine parameter. The geodesic equation obeys the
constraint equation gαβuαuβ = −c2, with k = c2 (k = 0) for timelike (null) orbits. Expanding it, we
get k = c2 ·

(
Nσ2 ṫ2

)
+N−1ṙ2 + r2ϕ̇2, and after replacing the conserved quantities and solving for the

radial velocity, we obtain

ṙ2 =

(
c2 − L2

r2

)
N +

E2

σ2 c2
. (17)

The periastron and apoastron of the orbit are given by rp = a (1− e) and ra = a (1 + e) respectively,
and we define the useful quantity

ra
rp

=
1 + e

1− e
= ξ. (18)

At the periastron and apoastron the radial velocity is zero, i.e. ṙ = 0. At these points, equation
(17) imposes the conditions for the orbit’s energy and angular momentum that guarantee the desired
orbital properties as a function of ra and e,5

E2 = −k ·
(ξ + 1)σ3

(
c2 ra − 2Gm

) (
c2 ra − 2Gξm

)
ra

[
c2(ξ + 1) ra − 2G (ξ2 + ξ + 1)m

] , L2 = − 2 c2Gmr2a
c2 ra(ξ + 1)− 2Gm (1 + ξ + ξ2)

.

(19)
We remind that in our numerical construction of the boson star solutions, we used geometrised units
with µ = 1. To use the previous solutions as a proper dark object mimicker we have to impose the
proper scale. Following previous works one notices that [SM03,CSW86,ST00,HKL99]

MDO = M
M2

Pl

µ
, (20)

with M the mass of the boson star obtained in the previous Section 2 in geometrised units with µ = 1,
and MDO the observed mass of the central dark object in units of M�. Since both MDO and M are
known, the previous relation allows one to recover the particle’s mass µ and the correct rescaling of
all quantities. The radial coordinate scales as

R =
GMDO

M c2
r . (21)

Due to the lack of a hard surface boson stars do not have a well-defined radius. For the “radius“ of
the latter, let us consider the areal radius of a spherical surface within which 99% of all the mass
is included (R∗). The latter defines the boson star compactness as C ≡ 2M99/R∗. The boson star
compactness is always smaller than unity, becoming unity for black holes.

We can now notice the existence of two kinds of orbits. Case I is characterised by rp > R∗, and
corresponds to the case where the luminous star never passes through a region of the spacetime with
significant matter density. In a similar way, Case II correspond to rp < R∗, and in this case, the
orbiting star has at least part of its orbit crossing a relevant matter density region.

4 Case I: rp > R∗

Let us start by imposing the observational parameters of the GAIA observation (14). In this case,
rp ≈ 0.8 AU, while the radius of a scalar boson star without a quartic interaction, i.e. λ = 0, is
R∗ ≈ 6.7× 10−6 AU (around 100 km) at maximal mass configuration MMax [SM03] (see Section 2.2).
This corresponds to a ratio of

R∗/rp ≈ 6.67× 10−7. (22)

Consequently, the luminous star never experiences a relevant matter density distribution. The luminous
star is so far from the central dark object that, as seen in Figure 2, it is impossible to distinguish the
dark object’s nature. In fact, looking at both the computed eccentricity and orbital period (our two
tests), one can see that independently of the boson star’s model, the latter coincide with the values

5Observe that, for non-vacuum solutions with a matter distribution in orbiting space, one can not guarantee that the
orbit has exactly eccentricity e and periastron rp. The previously obtained conditions are only valid for vacuum, i.e.
the mass is not radius dependent. As we will see in Section 5, the presence of bosonic matter in the orbital region of
the star creates non-trivial distortions of the orbit.
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obtained from the GAIA observation (14). Both eccentricity and period, (e, T ), are highly stable
across the domain of existence and between models.

However, one possibility remains for the luminous star’s orbit to be altered by the matter distribu-
tion associated with the dark object. As one goes outside the domain of existence spiral (see Figure 1),
from the maximum mass MMax to the highly diluted regime (ω → µ), one observes a decrease in the
compactness of the solution, predominantly driven by an increase in the radius R∗ (see Figure 2).

In addition, as already stated in Section 2.2, the region between the maximal mass MMax and
ω = 1.0 corresponds to the boson star’s stable branch [HPR+21,Gle88,GW89,BCHR16]. An additional
stable branch that goes from the second maximum of the mass (the absolute maximum) to some value
of ω < ωcrit. [HPR+21] exists in the axion-like case.

Uaxion (see (9))

Uself =
µ2
S

2 φ
2

Uself =
µ2
S

2 φ
2 + λφ4

V =
µ2
P

2 A2

R∗ [AU]

Figure 2: Radius (R∗) in astrophysical units containing 99% of the total mass of a boson star as a
function of the respective field amplitude at the origin – φ0 for the scalar field and f0 for the vector
field. The dotted/blue curve corresponds to a star built out of a vector; the solid/black to a scalar
boson star without a self-interaction (λ = 0); the green/dashed to a scalar star with a quartic self-
interaction λ = 100; and the red/dot-dashed to a scalar star with an axion-like potential fα = 0.02
(see equations (9) and (10)). The increase in the field’s central amplitude corresponds to going inside
the domain of the existence spiral from the right (see Figure 1). The leading term for small values of
the field’s amplitude is the mass term, while the self-interaction/axion potential is only relevant for
larger values of the field’s amplitude. In all cases, the maximum of R∗ occurs in the region dominated
by the mass term, always far smaller than the orbital radii reported by GAIA [EBRQ+22].

Since R∗ at MMax scales as ∼
√
λ for self-interacting scalar boson star, with non-self-interacting

solutions recovered for λ = 1 [SM03], one could ask if the presence of a positive self-interaction is
enough to increase R∗ such that R∗ ∼ rp. However, the self-interacting scalar boson star solution has
a higher mass at the maximum of the existence diagram (see Figure 1), and the resulting configuration
in astrophysical units will have a smaller radius than the non-self-interacting solution. In addition,
the quartic self-interaction tends to be relevant for solutions which lie inside the spiralling part of the
domain of existence. The latter solutions are simultaneously unstable and not significantly altered for
solutions we can numerically obtain. In particular, when λ is too large, there is an increased numerical
difficulty due to the couplings µ and λ being separated by many orders of magnitude. In addition, the
boson star tends to a self-interacting system instead of a self-gravitating one, which is forbidden for
positive quartic self-interactions [Der64,HOPR21].

The same behaviour occurs for the vector star solutions as in the case of a scalar star with λ = 0.
Following the same line of thought as with the scalar boson stars, one could add a quartic self-
interaction potential. However, as shown in [Min18], no significant value of the quartic self-interaction
constant would be achieved6.

Finally, in the case of the axion-like boson star, in neither branch of the existence diagram was
possible to obtain a boson star with R∗ ∼ rp. Hence, no observable deviation from the measured orbital
properties (14) was found to exist within the explored parameters. However, it could be the case that
if one decreases the coupling constant fα further below fα = 0.02, that the negative self-interaction
characteristic of the potential Uaxion in (9) would lead to a more diluted boson star that tends to have

6Recent works [CHWB22b] raised the existence of ghost instabilities in quartic self-interacting vector star models.
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a size R∗ larger than a corresponding non-interacting boson star.
The results of our analysis for the Case I are shown on the top left plots of Figure 3 (scalar

boson star) and Figure 4 (vector boson star). The orbital properties of the luminous star, namely,
eccentricity, period and semi-major axis, reproduce the observed values from GAIA. We should notice
that for visualisation purposes we have rescaled the size of the boson star with respect to the orbital
scale ra, so that ra/R∗ = 10, while in the previous section ra/R∗ ∼ 106. The latter choice would just
make the inner boson star a simple dot in the figure.

To summarise, we showed in this section that the measured orbital parameters are consistent with
the scenario that the dark object detected by GAIA [EBRQ+22] is a boson star of either scalar or
vector nature for natural choices of the respective theory spaces.

Table 1: Characteristics of the boson star model belonging to Case I (see Section 4), which gives
configurations in agreement with GAIA’s observation. All boson star configurations below correspond
to the maximum (MMax) of the respective curve on the existence diagram (see Figure 1). The total
physical mass is fixed as MT = 11.77M� according to GAIA’s observation. Notice that for the
scalar/vector particle’s mass (µ) the boson star is built of, we give only the respective magnitude.

Boson star characteristics - Case I
Model Potential Boson mass

(µ) at MMax

[GeV/c2]

Radius R∗ at
MMax [km]

Interaction
coupling
(λ)

Scalar, non-interacting Uself =
µ2
S

2 φ
2 10−20 134 λ = 0

Scalar, self-interacting Uself =
µ2
S

2 φ
2 + λφ4 10−20 87 λ = 100

Scalar, axion-like Uaxion (see (9)) 10−19 317 fα = 0.02

Vector V =
µ2
P

2 A2 10−20 124 0

5 Case II: rp < R∗

In the previous section, we showed that one can construct fairly natural boson star configurations where
the luminous star is always very far from the matter distribution generating the central gravitational
potential. As a result, the orbit of the luminous star is practically indistinguishable from the one
resulting from a black hole as a dark object. However, here we would like to entertain the possibility
that the boson star could be diluted enough to have the orbiting star inside the cloud (rp < R∗).
While a thorough study of timelike orbits in a boson star background is out of the scope of this work,
we would like to qualitatively show how different these can be from a point-like source. As we will
see, the trajectory of the luminous star for this case is drastically different from Case I. We will also
discuss later what potentials could lead to such diluted boson star configurations.

The simplest way to bring the luminous star within the bosonic cloud is to modify the ratio ra/R∗,
where R∗ is the radius of the boson star at 99% of its mass. We choose to consider a rescaling of the
radial coordinate in such a way that the semi-major axis of the orbit (a) is of the order of the boson
star 99% radii, a ∼ R∗. Clearly, this will not correspond anymore to the value observed by GAIA,
but our goal in this section is to rather understand the qualitative characteristics of such orbits. The
results are shown in Figure 3 for a scalar star, and Figure 4 for a vector star, respectively. For each
orbit of this case, we provide as initial conditions the apoastron, ra, and the eccentricity e. Although
ra retains its value as the system is let to evolve, this does not happen for the eccentricity which settles
down to a different value compared to its initial condition. Observe that as one moves ra deeper within
the bosonic cloud, an increase in the eccentricities is observed, accompanied by sufficiently large orbital
precession. In the present case, the mass function m(r) changes with the radial position in the region
of the orbit. The existence of a matter field in the orbit of the luminous star implies a potential well
that is very sharp at the origin and then slowly increases as r increases. This in principle leads to a
trajectory with a large range of radii to keep the same orbital energy.

We can get a qualitative insight for the precession of these orbits if we assume that the star crosses
only a thin outer shell of bosonic matter. This allows us to use approximately the relation for precession
around a Schwarzchild spacetime as derived in GR, δϕ ∼ GM99/(ra(1 − e2)), with ϕ the precession
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angle, and we assumed an elliptic Keplerian orbit. As one can see, an increase in eccentricity (e) will
lead to an increase in the amount of precession. Obviously, the validity of this relation breaks down
as long as the boson star’s mass cannot be considered constant anymore. While for both scalar and
vector stars the orbiting body inside the matter cloud has an eccentric and precessing orbit, for the
case of a vector star, due to the presence of a maximum of the vector field amplitude A2, a region of
the spacetime exists where the orbiting star exhibits small eccentricities (see Figure 4 bottom right).

Figure 3: Geodesic motion of a point particle (luminous star) around a scalar boson star. All boson
star configurations correspond to the following theory space choice: ω = 0.8, M = 0.5, λ = 0 and
R∗ = 4.6 (see Section 2). The individual plots correspond to the following initial conditions/choices
for the apoastron (ra), boson star size (R∗) and eccentricity (e): (Top left) ra/R∗ = 10.0 and e = 0.45;
(Top middle) ra/R∗ = 3.1 and e = 0.4; (Top right) ra/R∗ = 0.8 and e = 0.2; (Middle left) ra/R∗ = 0.5
and e = 0.1; (Middle middle) ra/R∗ = 0.3 and e = 0.3; (Middle right) ra/R∗ = 0.2 and e = 0.7;
(Bottom left) ra/R∗ = 0.1 and e = 0.9; (Bottom right) ra/R∗ = 0.07 and e = 0.9. In the background,
we plot the amplitude of the scalar field normalized to its amplitude at the origin (maximum), φ/φ0.
Notice that a lack of precession and the correct orbital eccentricity only occurs in the top left case,
which is also the one exactly reproducing the GAIA observation (see Case I of Section 4). In the
other plots, precession is induced due to the orbit of the luminous star crossing the bosonic matter
distribution (see Case II of Section 5). For Case II, the eccentricity of the orbits does not correspond
to the one provided as an initial condition.
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Figure 4: Same as Figure 3, but for the geodesic motion of a point mass orbiting a vector boson star.
All shown boson star configurations correspond to the following theory space choice: ω = 0.8, M = 0.8
and R∗ = 6.5 (see Section 2). The individual plots correspond to the following initial conditions/choices
for the apoastron (ra), boson star size (R∗) and eccentricity (e): (Top left) ra/R∗ = 10.0 and e = 0.45;
(Top middle) ra/R∗ = 3.1 and e = 0.4; (Top right) ra/R∗ = 0.8 and e = 0.1; (Middle left) ra/R∗ = 0.5
and e = 0.2; (Middle middle) ra/R∗ = 0.3 and e = 0.5; (Middle right) ra/R∗ = 0.2 and e = 0.8;
(Bottom left) ra/R∗ = 0.1 and e = 0.9; (Bottom right) ra/R∗ = 0.07 and e = 0.2. In the background is
plotted the vector field density amplitude |A2| of the vector field normalized to its maximum amplitude,
|A2|

Max A2 . We remind that a lack of precession and the correct orbital eccentricity only occurs in the
top left case, which is the one exactly reproducing the GAIA observation (see Case I of Section 4). In
the other plots, precession is induced due to the orbit of the luminous star crossing the bosonic matter
distribution (see Case II of Section 5). For Case II, the eccentricity of the orbits does not correspond
to the one provided as an initial condition.

The large eccentricities and high orbital precession, which occurs when the luminous star crosses
the matter distribution, create a distinctive behaviour compared to the Case I explored in the previous
section. This seems to indicate that: i) GAIA [EBRQ+22] can not be reproduced by a boson star
configuration that encompasses the orbit of the star; ii) there is a distinct, observationally-testable
behaviour that can be used to probe the nature of the dark object. Indeed, our predicted orbital
dynamics for Case II imply that future astrometric observations of similar systems could provide an
opportunity to distinguish between a scalar and a vector boson star (or even more exotic fields), and
their respective interactions. A detailed prediction of such orbital dynamics goes beyond the scope of
our current project, and we leave this for future work, however, our analysis points to the following
statement. For a potential with a mass term, µ > 0, the addition of self-interactions with positive
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couplings will tend to make the star smaller, i.e. interactions ∼ c2nφ
2n with c2n > 0 and n > 2. The

opposite situation will occur for negative couplings c2n < 0, provided they dominate the potential
over the mass term. Such a situation could occur for the axion-like potential of equation (9) with a
sufficiently small coupling fα � 1, which will, in turn, lead to a sufficiently negative self-interaction.
The latter solutions require a thorough investigation of their own due to non-trivial features compared
to the other cases studied in this work. A first step in constructing the respective existence diagram
for such a potential has already been made in [GMP19].

6 Summary and discussion
Recently, GAIA observed a Sun-like star orbiting a dark central object, at a distance of about 1.4 AU,
and a particularly high orbital period of 187.8 days [EBRQ+22]. As we explained in the Introduction
(Section 1), identifying the central dark object with a black hole is plausible, but rather challenging
to support within the context of binary evolution given the characteristics of the binary system. Here,
we investigated the possibility that the central dark object is a boson star, showing that a boson star
can explain the observations for fairly reasonable choices of the theory-space parameters.

For our analysis, we considered two distinct types of boson stars, namely, scalar and vector ones, re-
spectively made of scalar and vector boson particles. We solved the coupled gravity-matter equations to
construct the boson star models, which provided the gravitational potential of the dark central object.
Our results for the scaling of the boson stars’ masses and radii are shown in Figures 1 and 2 respectively.

We proceeded with the computation of timelike orbits of a point mass (luminous star) in the grav-
itational potential of the constructed boson stars. The results are shown in Figures 3 and 4. In this
regard, we considered the case where the luminous star does not cross the bosonic matter distribu-
tion (Case I, Section 4), and a case where it does (Case II, Section 5). In Case I, the constructed
boson stars exhibit radii which are much smaller than the closest approximation of the orbiting star,
i.e. rp > R∗, and the matter density present in the space where the luminous star passes through
is negligible. As we showed, one can construct boson star configurations for fairly natural choices of
theory-space parameters, for which the luminous star reproduces exactly the observed GAIA orbit, as
if the star was orbiting around a central black hole. In Case II, the boson star has a radius close to
the size of the orbiting star’s closest approximation, i.e. R∗ ∼ rp. As shown in Figures 3 and 4, a
non-negligible matter field in the orbit of the luminous star modulates the gravitational potential so
that the orbiting star gains large eccentricities and precessions. The absence of an observed precession
by GAIA rules out the presence of a matter field in the trajectory of the star, or the latter has to be
negligibly small. What is more, from Figure 2 and Table 1 one notices that the driving term in the
solution for the radius of the boson star comes from the mass term in the potential, i.e. the term ∝ φ2.
The addition of a quartic self-interaction with positive coupling (λ > 0) on top of the mass term in
the potential makes the corresponding boson star smaller in size. We expect this behaviour to hold for
higher-order interactions in the potential, that is, interactions of the form ∼ c2nφ2n with c2n > 0 and
n > 2. On the other hand, for a potential which is dominated by a negative self-interaction, the boson
star can be larger than the orbital radius leading to precession and high eccentricities. Such potentials
are ruled out by GAIA’s observation. We remind that a potential with a negative self-interaction can
arise in our axion-like potential given in equation (9) with coupling constant fα � 1.

Our analysis highlights the potential of high-precision astrometric observations to test the idea
of boson stars and their phenomenological imprints against those of black holes. Future astrometric
observations will further offer the possibility to distinguish amongst different boson star scenarios,
opening up an exciting window into the search for elusive particles beyond the standard model.
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